Hub Labeling Algorithms

Andrew V. Goldberg

Microsoft Research – Silicon Valley
Hub Labeling Algorithms

Andrew V. Goldberg

Microsoft Research – Silicon Valley

Job Seeker
Iteration of

- algorithm design
- algorithm analysis
- algorithm engineering
- experimental evaluation
- analysis of the results
Science of Algorithmics

Iteration of

- algorithm design
- algorithm analysis
- algorithm engineering
- experimental evaluation
- analysis of the results

Goal: Practical and theoretically justified algorithms
Example: Theory vs. Practice
Bellman-Ford algorithm (BF)

- fundamental algorithm
 - discovered in the 1950’s [B 58, F 56, M 57]
 - taught to CS and OR undergraduates
 - poor practical performance
Bellman-Ford algorithm (BF)

- fundamental algorithm
 - discovered in the 1950’s [B 58, F 56, M 57]
 - taught to CS and OR undergraduates
 - poor practical performance

- claimed practical improvements
 - Pape [P 74], threshold [DGKK 79], Pallatino [P 84], ...
 - not robust, time bounds worse than those for BF
Example: Theory vs. Practice

Bellman-Ford algorithm (BF)

- fundamental algorithm
 - discovered in the 1950’s [B 58, F 56, M 57]
 - taught to CS and OR undergraduates
 - poor practical performance

- claimed practical improvements
 - Pape [P 74], threshold [DGKK 79], Pallatino [P 84], ...
 - not robust, time bounds worse than those for BF

- BF with subtree disassembly
 - introduced by Tarjan [T 81] to amortize negative cycle detection over BF computation
 - unnoticed for 15 years
Example: Theory vs. Practice

Bellman-Ford algorithm (BF)

- fundamental algorithm
 - discovered in the 1950’s [B 58, F 56, M 57]
 - taught to CS and OR undergraduates
 - poor practical performance

- claimed practical improvements
 - Pape [P 74], threshold [DGKK 79], Pallatino [P 84], ...
 - not robust, time bounds worse than those for BF

- BF with subtree disassembly
 - introduced by Tarjan [T 81] to amortize negative cycle detection over BF computation
 - unnoticed for 15 years
 - greatly improves practical performance [CG 96]
Example: Theory vs. Practice

Bellman-Ford algorithm (BF)

- fundamental algorithm
 - discovered in the 1950’s [B 58, F 56, M 57]
 - taught to CS and OR undergraduates
 - poor practical performance
- claimed practical improvements
 - Pape [P 74], threshold [DGKK 79], Pallatino [P 84], ...
 - not robust, time bounds worse than those for BF
- BF with subtree disassembly
 - introduced by Tarjan [T 81] to amortize negative cycle detection over BF computation
 - unnoticed for 15 years
 - greatly improves practical performance [CG 96]
 - ... while integrating negative cycle detection
 - now in a textbook [KT 05]
1 Introduction

2 Hub Labeling Algorithm

3 Theory: Approximating Optimal Labels

4 Hierarchical Labels

5 Concluding Remarks
Motivation

Shortest path applications

- driving directions in road networks
- indoor and terrain navigation
- routing in communication/sensor networks
- moving agents on game maps
- proximity in social/collaboration networks

Challenges

- massive networks of varying structure
- real-time queries

Need a fast and robust approach
Single Pair Shortest Paths Problem

Input
- Graph $G = (V, E)$
- Length function ℓ
- Assume G is undirected (simpler notation)
- HL algorithm works for directed graphs

Query (multiple for the same network)
- Given origin s and destination t, find an optimal path from s to t
Motivating application: driving directions

- preprocessing to speed up queries
 - may take much longer than a query
 - can use a more powerful machine
- queries are fast (e.g., real-time)
Outline

1. Introduction
2. Hub Labeling Algorithm
3. Theory: Approximating Optimal Labels
4. Hierarchical Labels
5. Concluding Remarks
Labeling Algorithms

Labeling Algorithm [P 99]

- precompute labels $L(v)$ for all $v \in V$
- answer s, t query using $L(s)$ and $L(t)$ only
- G used only for preprocessing

Label Sizes

- some networks have small labels, some do not

- trees: $O(\log n)$-size labels
- planar graphs: $O^*(\sqrt{n})$, $\Omega^*(n^{1/3})$
- general graphs: $\Omega^*(n)$
- graphs of highway dimension h: $O(h \log(h \log D))$
Labeling Algorithms

Labeling Algorithm [P 99]

- precompute labels $L(v)$ for all $v \in V$
- answer s, t query using $L(s)$ and $L(t)$ only
- G used only for preprocessing

Label Sizes

- some networks have small labels, some do not
 [GPPR 04]
 - trees: $O(\log n)$-size labels
 - planar graphs: $O^*(\sqrt{n})$, $\Omega^*(n^{1/3})$
 - general graphs: $\Omega^*(n)$
- graphs of highway dimension h: $O(h \log(h) \log(D))$
 [ADFGW 11]
Hub Labeling Algorithm (HL)

Hub Labeling

\[L(v) = \{(w, \text{dist}(v, w)) : w \in H(v)\} \]

where \(H(v) \subseteq V \) is a set of hubs of \(v \)

Labels satisfy the cover property: for all \(s, t \), a shortest \(s-t \) path intersects \(L(s) \cap L(t) \)

Queries are efficient if labels are small

A.V. Goldberg
Hub Labeling Algorithm (HL)

Hub Labeling

- $L(v) = \{(w, \text{dist}(v, w)) : w \in H(v)\}$, where $H(v) \subset V$ is a set of hubs of v
- Labels satisfy the **cover property**: for all s, t, a shortest s-t path intersects $L(s) \cap L(t)$

Queries are efficient if labels are small
Hub Labeling Algorithm (HL)

Hub Labeling

- $L(v) = \{(w, \text{dist}(v, w)) : w \in H(v)\}$, where $H(v) \subset V$ is a set of hubs of v
- Labels satisfy the **cover property**: for all s, t, a shortest s-t path intersects $L(s) \cap L(t)$

s-t query

- Find vertex $w \in L(s) \cap L(t)$ …
Hub Labeling Algorithm (HL)

Hub Labeling

- \(L(v) = \{ (w, \text{dist}(v, w)) : w \in H(v) \} \),
 where \(H(v) \subset V \) is a set of hubs of \(v \)

- Labels satisfy the cover property:
 for all \(s, t \), a shortest \(s-t \) path intersects \(L(s) \cap L(t) \)

\(s-t \) query

- Find vertex \(w \in L(s) \cap L(t) \) ...
- ... that minimizes \(\text{dist}(s, v) + \text{dist}(v, t) \)
Hub Labeling Algorithm (HL)

Hub Labeling

- $L(v) = \{(w, dist(v, w)) : w \in H(v))\}$, where $H(v) \subset V$ is a set of hubs of v
- Labels satisfy the cover property: for all s, t, a shortest s-t path intersects $L(s) \cap L(t)$

s-t query

- Find vertex $w \in L(s) \cap L(t)$...
- ... that minimizes $dist(s, v) + dist(v, t)$

Queries are efficient if labels are small
Example: Star Graph
Example: Star Graph

![Star Graph Diagram]

1. Node 1 is the central hub.
2. Nodes 2, 3, 4, and 5 are the peripheral nodes.
3. Each peripheral node is connected to the central hub and to one other peripheral node.
4. The diagram illustrates the concept of a hub graph, where the central hub (1) is connected to all peripheral nodes (2, 3, 4, 5).

This example is often used in the context of Hub Labeling algorithms, which aim to optimize the labeling of hubs in a network.
Another Example

```
1   2   3   5

1  1  2  3  5
```

```
1   2   4 1   2 1   2   3
1
2
4 3
1   2   4 1   2 1   2   3
1
```
Another Example

![Graph Diagram]

Nodes: 1, 2, 3, 4, 5
Connections: 1-2, 2-3, 4-1, 1-5
Query Complexity

Label parameters

- $|L(v)|$: the number of hubs in $L(v)$
- size: $|L| = \sum_V |L(v)|$
- max label size: $M = \max_V |L(v)|$
Label parameters

- $|L(v)|$: the number of hubs in $L(v)$
- **size**: $|L| = \sum_v |L(v)|$
- **max label size**: $M = \max_v |L(v)|$

$L(s)$

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>6</th>
<th>35</th>
<th>37</th>
<th>102</th>
<th>155</th>
<th>172</th>
</tr>
</thead>
</table>

$L(t)$

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>6</th>
<th>8</th>
<th>43</th>
<th>45</th>
<th>85</th>
</tr>
</thead>
</table>

s-t query complexity

- **assume** $|L(s)| \leq |L(t)|$
- $\forall v$, sort v’s hubs by vertex IDs; query intersects sorted lists
- $O(|L(s)| + |L(t)|) = O(M)$; good locality
Query Complexity

Label parameters

- $|L(v)|$: the number of hubs in $L(v)$
- **size**: $|L| = \sum_v |L(v)|$
- **max label size**: $M = \max_v |L(v)|$

$s-t$ query complexity

Assume $|L(s)| \leq |L(t)|$

$\forall v$, sort v's hubs by vertex IDs; query intersects sorted lists

- $O(|L(s)| + |L(t)|) = O(M)$; good locality
Query Complexity

Label parameters

- $|L(v)|$: the number of hubs in $L(v)$
- **size**: $|L| = \sum_v |L(v)|$
- **max label size**: $M = \max_v |L(v)|$

\[
L(s) = \begin{bmatrix}
2 & 3 & 6 & 35 & 37 & 102 & 155 & 172
\end{bmatrix}
\]

\[
L(t) = \begin{bmatrix}
2 & 6 & 8 & 43 & 45 & 85
\end{bmatrix}
\]

s-t query complexity

Assume $|L(s)| \leq |L(t)|$

$\forall v$, sort v’s hubs by vertex IDs; query intersects sorted lists

\[O(|L(s)| + |L(t)|) = O(M); \text{ good locality}\]
Label parameters

- $|L(v)|$: the number of hubs in $L(v)$
- size: $|L| = \sum_v |L(v)|$
- max label size: $M = \max_v |L(v)|$

$s-t$ query complexity

Assume $|L(s)| \leq |L(t)|$

$s-t$ query complexity

- $O(|L(s)| + |L(t)|) = O(M)$; good locality
Query Complexity

Label parameters

- $|L(v)|$: the number of hubs in $L(v)$
- **size**: $|L| = \sum_{v} |L(v)|$
- **max label size**: $M = \max_{v} |L(v)|$

$s-t$ query complexity

assume $|L(s)| \leq |L(t)|$

$\forall v$, sort v’s hubs by vertex IDs; query intersects sorted lists

- $O(|L(s)| + |L(t)|) = O(M)$; good locality
Query Complexity

Label parameters

- $|L(v)|$: the number of hubs in $L(v)$
- **size**: $|L| = \sum_v |L(v)|$
- **max label size**: $M = \max_v |L(v)|$

\[
L(s) = \begin{bmatrix} 2 & 3 & 6 & 35 & 37 & 102 & 155 & 172 \end{bmatrix}
\]

\[
L(t) = \begin{bmatrix} 2 & 6 & 8 & 43 & 45 & 85 \end{bmatrix}
\]

$s-t$ query complexity

assume $|L(s)| \leq |L(t)|$

$\forall v$, sort v’s hubs by vertex IDs; query intersects sorted lists

- $O(|L(s)| + |L(t)|) = O(M)$; good locality
Query Complexity

Label parameters

- $|L(\nu)|$: the number of hubs in $L(\nu)$
- size: $|L| = \sum_V |L(\nu)|$
- max label size: $M = \max_V |L(\nu)|$

<table>
<thead>
<tr>
<th>$L(s)$</th>
<th>2</th>
<th>3</th>
<th>6</th>
<th>35</th>
<th>37</th>
<th>102</th>
<th>155</th>
<th>172</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L(t)$</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>43</td>
<td>45</td>
<td>85</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$s-t$ query complexity

assume $|L(s)| \leq |L(t)|$

∀ν, sort ν’s hubs by vertex IDs; query intersects sorted lists

- $O(|L(s)| + |L(t)|) = O(M)$; good locality
Query Complexity

Label parameters

- $|L(v)|$: the number of hubs in $L(v)$
- **size**: $|L| = \sum_v |L(v)|$
- **max label size**: $M = \max_v |L(v)|$

<table>
<thead>
<tr>
<th>$L(s)$</th>
<th>2</th>
<th>3</th>
<th>6</th>
<th>35</th>
<th>37</th>
<th>102</th>
<th>155</th>
<th>172</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L(t)$</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>43</td>
<td>45</td>
<td>85</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

s-t query complexity

Assume $|L(s)| \leq |L(t)|$

$\forall v$, sort v’s hubs by vertex IDs; query intersects sorted lists

$O(|L(s)| + |L(t)|) = O(M)$; good locality
Query Complexity

Label parameters

- $|L(\nu)|$: the number of hubs in $L(\nu)$
- size: $|L| = \sum_V |L(\nu)|$
- max label size: $M = \max_V |L(\nu)|$

$$L(s) = \begin{bmatrix} 2 & 3 & 6 & 35 & 37 & 102 & 155 & 172 \end{bmatrix}$$

$$L(t) = \begin{bmatrix} 2 & 6 & 8 & 43 & 45 & 85 \end{bmatrix}$$

$s-t$ query complexity

assume $|L(s)| \leq |L(t)|$

$\forall \nu$, sort ν’s hubs by vertex IDs; query intersects sorted lists

- $O(|L(s)| + |L(t)|) = O(M)$; good locality
Label parameters

- $|L(\nu)|$: the number of hubs in $L(\nu)$
- **size**: $|L| = \sum_V |L(\nu)|$
- **max label size**: $M = \max_V |L(\nu)|$

$s-t$ query complexity

Assume $|L(s)| \leq |L(t)|$

$\forall \nu$, sort ν's hubs by vertex IDs; query intersects sorted lists

- $O(|L(s)| + |L(t)|) = O(M)$; good locality
Label parameters

- $|L(v)|$: the number of hubs in $L(v)$
- size: $|L| = \sum_V |L(v)|$
- max label size: $M = \max_V |L(v)|$

$s-t$ query complexity

Assume $|L(s)| \leq |L(t)|$

$\forall v$, sort v’s hubs by vertex IDs; query intersects sorted lists

- $O(|L(s)| + |L(t)|) = O(M)$; good locality
Label parameters

- $|L(v)|$: the number of hubs in $L(v)$
- size: $|L| = \sum_{v} |L(v)|$
- max label size: $M = \max_{v} |L(v)|$

Time estimate assuming memory-bound queries:

- $|L(s)| = |L(t)| = 100$
- 4 byte IDs and dist
- 128 byte cache lines
- 50ns latency
- $2 \cdot \lceil 100 \cdot 8/128 \rceil \cdot 50 = 700\text{ns}$

s-t query complexity

assume $|L(s)| \leq |L(t)|$

$\forall v$, sort v’s hubs by vertex IDs; query intersects sorted lists

- $O(|L(s)| + |L(t)|) = O(M)$; good locality
Query Complexity

Label parameters

- \(|L(v)|\): the number of hubs in \(L(v)\)
- size: \(|L| = \sum_v |L(v)|\)
- max label size: \(M = \max_v |L(v)|\)

\[
\begin{array}{l}
|L(s)| = 2, 3, 6, 35, 37, 102, 155, 172 \\
|L(t)| = 2, 6, 8, 43, 45, 85
\end{array}
\]

Time estimate assuming memory-bound queries:

- \(|L(s)| = |L(t)| = 100\)
- 4 byte IDs and dist
- 128 byte cache lines
- 50ns latency
- \(2 \cdot \left\lceil 100 \cdot \frac{8}{128} \right\rceil \cdot 50 = 700\) ns

\(-t\) query complexity

assume \(|L(s)| \leq |L(t)|\)

\(\forall v\), sort \(v\)'s hubs by vertex IDs; query intersects sorted lists

- \(O(|L(s)| + |L(t)|) = O(M)\); good locality
- \(O(|L(s)|)\) [ST 07]
Performance on Road Networks

Fast HL implementations

- implementation motivated by better query bounds [ADFGW 11]
- surprisingly small labels
- fastest distance oracles for road networks
Performance on Road Networks

Fast HL implementations

- implementation motivated by better query bounds [ADFGW 11]
- surprisingly small labels
- fastest distance oracles for road networks

Western Europe, \(n = 18M, m = 24M \)

| variant | prep (h:m) | \(|L|/n \) | GB | [ns] |
|---------|------------|---------|----|------|
| HL | 0:03 | 98 | 22.5 | 700 |
| HL-15 | 0:05 | 78 | 18.8 | 556 |
| HL-17 | 0:25 | 75 | 18.0 | 546 |
| HL-R | 5:43 | 69 | 17.7 | 508 |
Beyond Road Networks: RXL Implementation

| instance | \(n(K)\) | \(m/n\) | prep (h:m) | \(|L|/n\) | MB | [\(\mu s\)] |
|--------------|-----------|---------|------------|----------|----|-------------|
| fla-t | 1070 | 2.5 | 0:02 | 41 | 261| 0.5 |
| buddha | 544 | 6.0 | 0:02 | 92 | 180| 0.9 |
| buddha-w | 544 | 6.0 | 0:11 | 336 | 953| 2.9 |
| rgg20 | 1049 | 13.1 | 0:16 | 220 | 807| 2.0 |
| rgg20-w | 1049 | 13.1 | 1:00 | 589 | 3154| 4.9 |
| WikiTalk | 2394 | 2.0 | 0:17 | 60 | 626| 0.5 |
| Indo | 1383 | 12.0 | 0:04 | 27 | 218| 0.4 |
| Skitter-u | 1696 | 13.1 | 0:47 | 274 | 1075| 2.3 |
| MetrcS | 2250 | 19.2 | 0:38 | 117 | 593| 0.8 |
| eur-t | 18010 | 2.3 | 2:19 | 82 | 17203| 0.8 |
| Hollywood | 1140 | 98.9 | 17:04 | 2114 | 5934| 13.9 |
| Indochin | 7415 | 25.8 | 4:07 | 66 | 3917| 0.7 |
Outline

1. Introduction
2. Hub Labeling Algorithm
3. Theory: Approximating Optimal Labels
4. Hierarchical Labels
5. Concluding Remarks
Approximating Optimal Labels

Theoretical results

- optimizing $|L|$:
 - poly-time $O(\log n)$ approximation [CHKZ 03]
 - $O(n^5)$ time
 - $O(n^3 \log n)$ time improvement [DGSW 14]
 - NP-hard [BGKSW 14]

- optimizing M:
 - poly-time $O(\log n)$ approximation [BGGN 13]
 - $O(n^5)$ time
 - $O(n^3 \log^2 n)$ time improvement [DGSW 14]
Cohen at al. Algorithm (log-HL)

- for a (partial) labeling L, a pair u, w is covered if $L(u) \cap L(w)$ contains a vertex on $u-w$ SP
- v covers u, w if there is a $u-w$ SP through v
for a (partial) labeling L, a pair u, w is covered if $L(u) \cap L(w)$ contains a vertex on $u-w$ SP

v covers u, w if there is a $u-w$ SP through v

log-HL algorithm sketch

1. start with an empty L, U containing all vertex pairs
2. add a vertex v to the labels of a set of vertices S
3. remove covered pairs from U
4. if $U = \emptyset$ halt, otherwise go to 2
Cohen at al. Algorithm (log-HL)

- for a (partial) labeling \(L \), a pair \(u, w \) is covered if \(L(u) \cap L(w) \) contains a vertex on \(u-w \) SP
- \(v \) covers \(u, w \) if there is a \(u-w \) SP through \(v \)

log-HL algorithm sketch

1. start with an empty \(L, U \) containing all vertex pairs
2. add a vertex \(v \) to the labels of a set of vertices \(S \)
 Pick \(v \) and \(S \) as follows:

\[
v, S = \arg\max_{v \in V} \max_{S \subseteq V} \frac{\# \text{ pairs covered if we add } v \text{ to } S}{|S|}
\]

3. remove covered pairs from \(U \)
4. if \(U = \emptyset \) halt, otherwise go to 2
Center Graphs and MDS

Center graph

$G_v = (V, E_v)$ where $(u, w) \in E_v$ if $u, w \in U$ and v covers u, w

- **graph density**: $(\#\text{edges})/(\#\text{vertices})$
- **MDS problem**: find a maximum density vertex-induced subgraph

MDS complexity: polynomial using parametric flows, linear time 2-approximation [KP 94] (2-MDS)
Center Graphs and MDS

Center graph

\[G_v = (V, E_v) \text{ where } (u, w) \in E_v \text{ if } u, w \in U \text{ and } v \text{ covers } u, w \]

- **graph density**: (#edges)/(#vertices)
- **MDS problem**: find a maximum density vertex-induced subgraph

MDS for \(G_v \)

\[
\max_{S \subseteq V} \frac{\# \text{ pairs covered if we add } v \text{ to } S}{|S|}
\]

Step (2): maximize MDS over all \(G_v \)

MDS complexity

- polynomial using parametric flows
- linear time 2-approximation \([KP 94]\) (2-MDS)
2-Approximate MDS

- \(\text{density} = \frac{\sum_v \text{deg}(v)}{2|V|} \)
- if for all \(v \) \(\text{deg}(v) \geq \mu \), then \(\text{density} \geq \mu / 2 \)
- if \(\mu \) is the MDS value and \(\text{deg}(v) < \mu \), then \(v \) is not in an MDS
2-Approximate MDS

- \[\text{density} = \frac{\sum_v \text{deg}(v)}{2|V|} \]
- If for all \(v \), \(\text{deg}(v) \geq \mu \), then \(\text{density} \geq \frac{\mu}{2} \)
- If \(\mu \) is the MDS value and \(\text{deg}(v) < \mu \), then \(v \) is not in an MDS

2-MDS Algorithm

1. While more than one vertex remains
2. Delete a minimum degree vertex
3. Update degrees
4. Goto (1)
5. Return the densest graph seen
Eager-Lazy Algorithm [DGSW 14]

α-eager evaluation (suggested by a heuristic)

- μ is an upper bound on MDS value of G, $\alpha > 1$
- while MDS value of $G < \frac{\mu}{2\alpha}$ delete min degree vertex
- G': remaining graph; $G - G'$ has MDS value $\leq \frac{\mu}{\alpha}$
Eager-Lazy Algorithm [DGSW 14]

α-eager evaluation (suggested by a heuristic)

- \(\mu \) is an upper bound on MDS value of \(G \), \(\alpha > 1 \)
- while MDS value of \(G < \frac{\mu}{2\alpha} \) delete min degree vertex
- \(G' \): remaining graph; \(G - G' \) has MDS value \(\leq \frac{\mu}{\alpha} \)

Center graph densities are monotone

Eager-lazy algorithm

- start with empty \(L \), \(U = V \times V \)
- compute upper bounds \(\mu_v \) on MDS values of \(G_v \)
- while \(U \neq \emptyset \)
 - \(v = \text{argmax}(\mu_v) \); apply \(\alpha \)-eager evaluation to \(G_v \)
 - add \(v \) to the vertices of \(G' \), \(G = G - G' \), update \(U \)
 - \(\mu_v = \frac{\mu_v}{\alpha} \)
Eager-Lazy Algorithm Analysis

- Each iteration is $O(n^2)$ (vs. $O(n^3)$)
- Decreases μ_v by a constant factor
- Each v chosen $O(\log n)$ times (vs. $O(n^2)$)
- $O(n^3 \log n)$ bound (vs. $O(n^5)$)
- $O(n^2)$ space if center graphs maintained implicitly (vs. $O(n^3)$)
Eager-Lazy Algorithm Analysis

- each iteration is $O(n^2)$ (vs. $O(n^3)$)
- decreases μ_v by a constant factor
- each v chosen $O(\log n)$ times (vs. $O(n^2)$)
- $O(n^3 \log n)$ bound (vs. $O(n^5)$)
- $O(n^2)$ space if center graphs maintained implicitly (vs. $O(n^3)$)

From practice to theory

- log-HL picks same v consecutively
- use second-densest subgraph seen
Eager-Lazy Algorithm Analysis

- each iteration is $O(n^2)$ (vs. $O(n^3)$)
- decreases μ_v by a constant factor
- each v chosen $O(\log n)$ times (vs. $O(n^2)$)
- $O(n^3 \log n)$ bound (vs. $O(n^5)$)
- $O(n^2)$ space if center graphs maintained implicitly (vs. $O(n^3)$)

From practice to theory

- log-HL picks same v consecutively
- use second-densest subgraph seen
- use α-eager evaluation
- prove the new bound
Experimental Results: Eager-Lazy

- G1.0: efficient implementation of log-HL
- G1.1: eager-lazy implementation with $\alpha = 1.1$
- G1.1 labels are not much bigger
- G1.1 is faster but still does not scale well

| instance | n | time (s) | $|L|/n$ |
|-----------|------|----------------|------------|
| | | G1.0 | G1.1 | G1.0 | G1.1 |
| email | 1133 | 109 | 47 | 30.0 | 30.4 |
| polblogs | 1222 | 376 | 145 | 25.2 | 25.5 |
| venus | 2838 | 978 | 558 | 27.3 | 28.0 |
| alue5067 | 3524 | 2971 | 2486 | 23.4 | 24.5 |
| ksw-64 | 4096 | 2319 | 901 | 81.4 | 82.3 |
| hep-th | 5835 | 6375 | 1479 | 38.7 | 39.2 |
| berlin | 10370| 16027| 8649 | 20.5 | 21.3 |
| PGPgiant | 10680| 19114| 3339 | 19.1 | 19.4 |
Outline

1. Introduction
2. Hub Labeling Algorithm
3. Theory: Approximating Optimal Labels
4. Hierarchical Labels
5. Concluding Remarks
Hierarchical Hub Labels (HHL) [ADGW 12]

\[v \preceq w \text{ if } w \text{ is a hub of } v \text{ (} w \text{ more important) } \]

\[L \text{ is hierarchical if } \preceq \text{ is a partial order} \]

- special class of HL
- can be polynomially larger [GPS 13] than HL
- in practice, HHL are often small
- in practice, HHL can be computed faster than HL
Canonical HHL

- L respects a total order of vertices, r, if \lesssim is consistent with r
- P_{uw} is the set of vertices on shortest paths from u to w

Canonical Labeling

- start with an empty labeling
- $\forall u, w, \text{ let } v = \arg\max_{v \in P_{uw}} r(x)$
- add v to $L(u)$ and $L(w)$
Canonical HHL

- \(L \) respects a total order of vertices, \(r \), if \(\lesssim \) is consistent with \(r \)
- \(P_{uw} \) is the set of vertices on shortest paths from \(u \) to \(w \)

Canonical Labeling

- start with an empty labeling
- \(\forall u, w, \) let \(v = \arg\max_{v \in P_{uw}} r(x) \)
- add \(v \) to \(L(u) \) and \(L(w) \)

Validity and minimality

- cover property: \(v \) covers \([u, w]\)
- \(v \) must be in \(L(u) \) to cover \([u, v]\)
- similarly \(v \) must be in \(L(w) \)
- in fact, all minimal HHL are canonical
Pruned Labeling (PL) Algorithm

[AIY 13]: compute canonical labeling form an order \(r \)

PL algorithm

- start with an empty \(L \)
- process vertices \(v \) in the order of importance
- run Dijkstra’s search from \(v \)
 - before scanning \(w \) check the following condition
 - is \(d(w) \geq (\text{estimate given by current labels})? \)
 - if yes, prune \(w \) (do not scan)
- add \(v \) to the labels of all \(w \) scanned by Dijkstra
Pruned Labeling (PL) Algorithm

[AIY 13]: compute canonical labeling form an order r

PL algorithm

- Start with an empty L
- Process vertices v in the order of importance
- Run Dijkstra’s search from v
 - Before scanning w check the following condition
 - Is $d(w) \geq$ (estimate given by current labels)?
 - If yes, prune w (do not scan)
- Add v to the labels of all w scanned by Dijkstra

Fact:
PL computes canonical HHL
Approximate PL complexity

- every scanned vertex is added to L
- $\approx O(|L| \frac{|L|}{n})$
- efficient if $|L|/n$ is small
Approximate PL complexity

- every scanned vertex is added to L
- $\approx O(|L| \frac{|L|}{n})$
- efficient if $|L|/n$ is small

Can separate vertex ordering and label generation
HHL Vertex Ordering

Requirements

- label quality (small size)
- efficiency
HHL Vertex Ordering

Requirements

- label quality (small size)
- efficiency

HHL orderings

- bottom up [ADFGW 11]: works well for road networks, but not robust
- by degree [AIY 13]: very fast, works on some networks but not robust
- greedy [ADGW 12]: slow but robust
 - can be made faster by sampling [DGPW 14]
process vertices from least to most important
Bottom-Up Ordering [ADFGW 11]

- process vertices from least to most important
- temporarily remove the next vertex v from the graph
Bottom-Up Ordering [ADFGW 11]

- process vertices from least to most important
- temporarily remove the next vertex v from the graph
 - add shortcuts to preserve distances (if needed)
Bottom-Up Ordering [ADFGW 11]

- process vertices from least to most important
- temporarily remove the next vertex v from the graph
 - add shortcuts to preserve distances (if needed)
Bottom-Up Ordering [ADFGW 11]

- process vertices from least to most important
- temporarily remove the next vertex v from the graph
 - add shortcuts to preserve distances (if needed)
- recursively compute labels on smaller graph
Bottom-Up Ordering [ADFGW 11]

- process vertices from least to most important
- temporarily remove the next vertex \(v \) from the graph
 - add shortcuts to preserve distances (if needed)
- recursively compute labels on smaller graph
- reinsert \(v \) and build label from its neighbors
Bottom-Up Ordering [ADFGW 11]

- process vertices from least to most important
- temporarily remove the next vertex v from the graph
 - add shortcuts to preserve distances (if needed)
- recursively compute labels on smaller graph
- reinsert v and build label from its neighbors
Bottom-Up Ordering [ADFGW 11]

- process vertices from least to most important
- temporarily remove the next vertex v from the graph
 - add shortcuts to preserve distances (if needed)
- recursively compute labels on smaller graph
- reinsert v and build label from its neighbors
 - works because any path from v must go through a neighbor
Greedy ordering (most to least important)

- $U = V \times V$
- while there are unprocessed vertices
- pick a vertex v that covers most pairs in U as the next highest in the ordering
- update U by deleting the pairs that v covers
Greedy ordering (most to least important)

[Abraham at al. 12]

- \(U = V \times V \)
- while there are unprocessed vertices
- pick a vertex \(v \) that covers most pairs in \(U \) as the next highest in the ordering
- update \(U \) by deleting the pairs that \(v \) covers

next we describe data structures

for simplicity assume that shortest paths are unique
Engineering Efficient Implementation

- build shortest path trees from each vertex
 - tree rooted at v_i represents all SPs from v_i

\[\text{complexity } \mathcal{O}(nD_{ij}(n, m)) \text{ time, } \mathcal{O}(n^2) \text{ space} \]

Use sampling to reduce time and space requirements
Engineering Efficient Implementation

- build shortest path trees from each vertex
 - tree rooted at v_i represents all SPs from v_i
- invariant: $\# \text{(descendants of } u \text{ in } T_i) = \# \text{ if SP from } v_i \text{ hit by } u$

Complexity $O(nD_{ij}(n,m))$ time, $O(n^2)$ space

Use sampling to reduce time and space requirements
Engineering Efficient Implementation

- build shortest path trees from each vertex
 - tree rooted at v_i represents all SPs from v_i
- invariant: $\# (\text{descendants of } u \text{ in } T_i) = \# \text{ if SP from } v_i \text{ hit by } u$
- add a vertex u with the most (total) decedents to the order
build shortest path trees from each vertex
 - tree rooted at v_i represents all SPs from v_i

invariant: \# (descendants of u in T_i) = \# if SP from v_i hit by u

add a vertex u with the most (total) decedents to the order

delete subtrees rooted at u and update descendant counts
- build shortest path trees from each vertex
 - tree rooted at v_i represents all SPs from v_i
- invariant: # (descendants of u in T_i) = # if SP from v_i hit by u
- add a vertex u with the most (total) decedents to the order
- delete subtrees rooted at u and update descendant counts
- the trees represent U
Engineering Efficient Implementation

- build shortest path trees from each vertex
 - tree rooted at \(v_i \) represents all SPs from \(v_i \)
- invariant: \# (descendants of \(u \) in \(T_i \)) = \# if SP from \(v_i \) hit by \(u \)
- add a vertex \(u \) with the most (total) decedents to the order
- delete subtrees rooted at \(u \) and update descendant counts
- the trees represent \(U \)
- complexity \(O(nD_{ij}(n,m)) \) time, \(O(n^2) \) space
Engineering Efficient Implementation

- build shortest path trees from each vertex
 - tree rooted at \(v_i \) represents all SPs from \(v_i \)
- invariant: \(\# \) (descendants of \(u \) in \(T_i \)) = \(\# \) if SP from \(v_i \) hit by \(u \)
- add a vertex \(u \) with the most (total) decedents to the order
- delete subtrees rooted at \(u \) and update descendant counts
- the trees represent \(U \)
- complexity \(O(nDij(n,m)) \) time, \(O(n^2) \) space
- use sampling to reduce time and space requirements
RXL: Relaxed Greedy Labeling [Delling et al. 14]

- maintain a sample of \(\ll n\) trees (within tree node budget)
RXL: Relaxed Greedy Labeling [Delling et al. 14]

- maintain a sample of \(\ll n \) trees (within tree node budget)
RXL: Relaxed Greedy Labeling [Delling et al. 14]

- maintain a sample of \(\ll n \) trees (within tree node budget)
- use \#descendants in the sample to estimate coverage of every \(u \)
 - sample is biased (e.g., vertices close to roots)
 - eliminate outliers
- maintain a sample of \(\ll n \) trees (within tree node budget)
- use \#descendants in the sample to estimate coverage of every \(u \)
 - sample is biased (e.g., vertices close to roots)
 - eliminate outliers
- add vertex \(u \) with the highest coverage estimate
RXL: Relaxed Greedy Labeling [Delling et al. 14]

- maintain a sample of ≪ n trees (within tree node budget)
- use #descendants in the sample to estimate coverage of every u
 - sample is biased (e.g., vertices close to roots)
 - eliminate outliers
- add vertex u with the highest coverage estimate
- remove descendants of u in sampled trees
RXL: Relaxed Greedy Labeling [Delling et al. 14]

- maintain a sample of \(< n\) trees (within tree node budget)
- use \(#\text{descendants}\) in the sample to estimate coverage of every \(u\)
 - sample is biased (e.g., vertices close to roots)
 - eliminate outliers
- add vertex \(u\) with the highest coverage estimate
- remove descendants of \(u\) in sampled trees
- add new (pruned using PL) trees as the budget permits
RXL: Relaxed Greedy Labeling [Delling et al. 14]

- maintain a sample of $\ll n$ trees (within tree node budget)
- use #descendants in the sample to estimate coverage of every u
 - sample is biased (e.g., vertices close to roots)
 - eliminate outliers
- add vertex u with the highest coverage estimate
- remove descendants of u in sampled trees
- add new (pruned using PL) trees as the budget permits
- sample size can be adjusted to trade time/space for quality
Degree vs. RXL

| instance | $n(K)$ | m/n | degree prep (h:m) | $|L|/n$ | RXL prep (h:m) | $|L|/n$ |
|------------|--------|-------|-------------------|-------|----------------|-------|
| fla-t | 1070 | 2.5 | 0:22 | 172 | 0:02 | 41 |
| buddha | 544 | 6.0 | 0:02 | 290 | 0:02 | 92 |
| buddha-w | 544 | 6.0 | 0:24 | 1165 | 0:11 | 336 |
| rgg20 | 1049 | 13.1 | 0:47 | 1136 | 0:16 | 220 |
| rgg20-w | 1049 | 13.1 | 14:43 | 5603 | 1:00 | 589 |
| WikiTalk | 2394 | 2.0 | 0:05 | 68 | 0:17 | 60 |
| Indo | 1383 | 12.0 | 0:04 | 172 | 0:04 | 27 |
| Skitter-u | 1696 | 13.1 | 0:32 | 457 | 0:47 | 274 |
| MetrcS | 2250 | 19.2 | 0:06 | 132 | 0:38 | 117 |
| eur-t | 18010 | 2.3 | – | – | 2:19 | 82 |
| Hollywood | 1140 | 98.9 | 10:40 | 2921 | 17:04 | 2114 |
| Indochin | 7415 | 25.8 | 3:20 | 540 | 4:07 | 66 |
Western Europe, $n = 18M, m = 24M$

| variant | prep (h:m) | $|L|/n$ | GB | [ns] |
|---------|------------|--------|-----|------|
| HL | 0:03 | 98 | 22.5| 700 |
| HL-15 | 0:05 | 78 | 18.8| 556 |
| HL-17 | 0:25 | 75 | 18.0| 546 |
| HL-R | 5:43 | 69 | 17.7| 508 |

Bottom-up ordering, plus
- greedy reordering of 2^{15} (HL-15) or 2^{17} (HL-17) top vertices
- range optimization (reordering of overlapping intervals)
From Practice to Theory

Recent results on HHL [BGKSW 14]

- computing optimal HHL is NP-hard
- greedy algorithm approximation ratio
 - $O(n^{1/2} \log n)$ upper bound
 - $\Omega(n^{1/2})$ lower bound
- weighted greedy (similar to \log-HL) algorithm approx ratio
 - $O(n^{1/2} \log n)$ upper bound
 - $\Omega(n^{1/3})$ lower bound
Recent results on HHL [BGKSW 14]

- computing optimal HHL is \textbf{NP-hard}
- greedy algorithm approximation ratio
 - $O(n^{1/2} \log n)$ upper bound
 - $\Omega(n^{1/2})$ lower bound
- weighted greedy (similar to log-HL) algorithm approx ratio
 - $O(n^{1/2} \log n)$ upper bound
 - $\Omega(n^{1/3})$ lower bound
- distance greedy algorithm
 - $M = O(h \log n \log D)$ (h: highway dimension; D: diameter)
 - $O(n^{1/2} \log n \log D)$ upper and $\Omega(n^{1/2})$ lower bounds on approx ratio
Recent results on HHL [BGKSW 14]

- computing optimal HHL is **NP-hard**
- greedy algorithm approximation ratio
 - \(O(n^{1/2} \log n) \) upper bound
 - \(\Omega(n^{1/2}) \) lower bound
- weighted greedy (similar to \log-HL) algorithm approx ratio
 - \(O(n^{1/2} \log n) \) upper bound
 - \(\Omega(n^{1/3}) \) lower bound
- distance greedy algorithm
 - \(M = O(h \log n \log D) \) (\(h \): highway dimension; \(D \): diameter)
 - \(O(n^{1/2} \log n \log D) \) upper and \(\Omega(n^{1/2}) \) lower bounds on approx ratio

Great open problem

Is there an \(O(\log n) \)-approximation algorithm for optimal HHL?
Remarks

- label compression: trades query speed for memory footprint
- HL in external memory and data bases
- many technical details omitted to simplify presentation
- recent results on HL
 - theoretical work
 - experimental work
 - impact beyond mainstream algorithms community
- active area, open problems remain
Other Work

Recent

- social networks
- learning from GPS traces
- maximum flows, including vision applications
- minimum cost flows
- other routing and location-based services algorithms

Not so recent

- mechanism design
- combinatorial optimization
- distributed systems (e.g., intermemory)
Thank You!

Joint work with
Ittai Abraham, Maxim Babenko, Daniel Delling, Haim Kaplan, Thomas Pajor, Ruslan Savchenko, Mathis Weller, Renato Werneck